2-Nitro-thioglycosides: α - and β -Selective Generation and Their Potential as β‑Selective Glycosyl Donors

Peng Peng, Yiqun Geng, Inigo Göttker-Schnetmann, and Richard R. Schmidt*

Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany

S Supporting Information

[AB](#page-3-0)STRACT: [Michael-type](#page-3-0) addition of thiolates to 2-nitro-D-glucal or to 2-nitro-D-galactal derivatives readily provides 2-deoxy-2-nitro-1 thioglycosides. Kinetic and thermodynamic reaction control permitted formation of either the α - or preferentially the β-anomers, respectively. Addition of achiral and chiral thiourea derivatives to the reaction mixture increased the reaction rate; the outcome is substrate-controlled. The 2-deoxy-2-nitro-1-thioglycosides are ex-

cellent glycosyl donors under arylsulfenyl chloride/silver triflate (ArSCl/AgOTf) activation, and they provide, anchimerically assisted by the nitro group, mostly β -glycosides.

B ase-catalyzed 2-nitrogalactal concatenation with nucleo-
philes is a very useful tool for forming α -glycosidic bonds
with a series or a throning $\frac{1}{n}$. This way, we symbosized all with L-serine or L-threonine.¹ This way, we synthesized all members of the mucin family.^{1,2} This chemistry was successfully employed for the synthesis [o](#page-3-0)f various O-, S-, P-, and Cglycosides. $2,3$ Also nucleoside[s co](#page-3-0)uld be readily obtained; thus, it was found that the base had a major influence on the α/β -selectivity.^{[4](#page-3-0)} [T](#page-3-0)his convenient and highly efficient glycosidation method could be also extended to 2-nitroglucal. However, anomeric [s](#page-3-0)tereocontrol in this base-catalyzed Michael-type addition to the nitroolefin moiety was more complex. $3d,5$

As thiol addition to 2-nitroglycals is particularly efficient, the derived 2-deoxy-2-nitro-1-thioglycosides are readily [ava](#page-3-0)ilable.⁶ These thioglycosides can also be used as glycosyl donors.^{6b} Under NIS/TMSOTf activation in dichloromethane (DCM) [at](#page-3-0) 0 °C or in propionitrile at −15 °C, respectively, with [O](#page-3-0)nucleophiles, preferentially $β$ -glycosides were obtained. These studies were recently resumed, as we noticed that the base and time dependence of thiol additions to 2-nitroglycals could be used to generate either the α - or β -thioglycosides.

Bis-H-bond donors, such as achiral or chiral thioureas greatly effect Michael-type additions to nitroolefin moieties.^{7,8} Hence, their influence on the reaction rate and α/β -selectivity of thiol additions to 2-nitroglycals was of interest.

For thioglycoside activation efficient reagents have been introduced in recent years.⁹ Hence, the potential of 2-deoxy-2nitro-thioglycosides as glycosyl donors and their usefulness for the important glycosamine [g](#page-3-0)lycosidation is now displayed.

In studies of the base and solvent dependence of thiophenol addition to the readily available 3,4,6-tri-O-benzyl-2-nitro-Dglucal 1 ,^{3k} the use of *tert*-BuOK as the base and toluene as the solvent (see Scheme 1 and Table 1 in the Supporting Informa[tio](#page-3-0)n), led to a mixture of the α -thioglucoside 2α and the α -thiomannoside 3 α . An increase of the amount [of base and](#page-3-0) [the reaction](#page-3-0) time shifted the equilibrium in favor of the β thioglucoside 2β. Hünig's base and N-methylmorpholine furnished similar results; however, triethylamine led to clean

formation of the α -thioglucoside 2α which for stereoelectronic reasons is due to fast Michael addition from the α -side and following fast protonation from the β -side. The secondary amines diisopropylamine and piperidine gave product mixtures. In DCM as the solvent similar results were obtained: with triethylamine as the base after 30 min, 1 was completely transformed into 2α ; extending the reaction time to 24 h led to partial transformation into 3α . As DCM is more polar than toluene, as expected, the reaction rate was slightly increased. 4- Pyrrolidinopyridine and DMAP led, depending on reaction time and base concentration, to an increase in the formation of 3α and finally of 2β ; thus, steric effects override the anomeric effect. The reported exclusive formation of 2β could not be confirmed.^{3h} Also other solvents were studied, as for instance ether; however, no advantages were visible. Therefore, the optimization studi[es](#page-3-0) were performed in toluene as solvent with triethylamine as the base (Table 1).

The variation of the base concentration showed that 0.01 equiv of triethyla[min](#page-1-0)e led to complete formation of 2α within 30 min (Table 1, entries 1, 2, and 6). Extension of the reaction time (entries 3−5) or increasing the triethylamine concentration gave in a slo[w](#page-1-0) reaction the α -thiomannoside 3α and, in an even slower thermodynamically controlled reaction, the β -thioglucoside 2β (entries 1−10) in up to \sim 75% yield (entry 9). A very high base concentration and long reaction time (entry 10) led to slow degradation of 2α , 2β , and 3α resulting in the formation of complex product mixtures.

Addition of thiourea 9 to the reaction mixture (entries 11− 15), in order to raise the Michael-type properties of 1 via Hbonding to the nitro group, led to fast equilibration (compare entries 1 and 11, 4 and 13, 5 and 14, 9 and 15); however, the same results were obtained. Combination of the base and thiourea activation properties as in the chiral organocatalysts (R,R) -10¹⁰

Received: January 29, 2015 Published: March 5, 2015

a Reactions 1−10 were carried out with 1.0 equiv of 1 and 2.0 equiv of PhSH at rt. ^bReactions 11−17 were carried out by adding 0.3 equiv of thiourea 9 or 0.05 equiv of (R,R) -10 and (S,S) -10, respectively. CYields were 90%−100%; product ratio was determined by NMR.

and (S,S) -10¹¹ showed only a slight rate difference, with (S,S) -10 being the more efficient catalyst (entries 16, 17). Site selectivity in favor of α [- o](#page-3-0)r β -thiolate addition with (R,R)-10 and (S,S)-10, respectively, was not observed. Hence, different from conformationally nonstrained nitro-olefins, thiolate addition to the conformationally constrained 2-nitroglycal is essentially controlled by the structure of the substrate and not by the asymmetric induction of the chiral thiourea catalyst.

In order to confirm the base catalyzed equilibration between 2α , 3 α , and 2 β (Schemes 1, 2), 2 α was treated with triethylamine

Scheme 1. Base Catalyzed Thiophenol Addition to 2- Nitroglucal 1

Scheme 2. Thiophenol Addition to 2-Nitrogalactal 4

in toluene which led after 3 h to ∼25% of starting material 1 (Table 2, entry 1). Upon addition of thiophenol, 2α was retained,

Table 2. Stability of 2α and 2β in the Presence of Trethylamine As Base in Toluene As Solvent at Room Temperature^a

entry	2	NEt_3 (equiv)	PhSH	time	result ^b		
1	2α	0.01	none	3 _h	$1+2\alpha$ (1:3)		
$\overline{2}$	2α	0.01	2.0 equiv	18h	2α		
3	2α	1.0	2.0 equiv 30 min		$2\alpha + 3\alpha + 2\beta$ (1:1:1)		
4	2α	1.0	2.0 equiv 24 h		$2\alpha + 3\alpha + 2\beta$ (1:1:6)		
5	2β	1.0	none		24 h $1+2\alpha+3\alpha+2\beta$ (1:2:1:19)		
6	2β	1.0	2.0 equiv	24 h	$2\alpha + 3\alpha + 2\beta$ (3:2:18)		

^aAll reactions were carried out with 1.0 equiv of 2. ^bYields were 90%− 100%; product ratio was obtained by NMR.

as readdition of thiophenol was faster than elimination to 1; therefore, also no 3α (and 3β) was formed (entry 2). However, with more base, after 30 min, appreciable amounts of 3α and 2β were formed (entry 3) and after 18 h an \sim 1:1:6 ratio of 2 α , 3 α , and 2β was obtained (entry 4). Practically the same results were found for 2β : no addition of thiophenol to the reaction mixture led to equilibration with 1, 2α , and 3α (entry 5), whereas addition of thiophenol suppressed the formation of 1 (entry 6). Under all equilibrating conditions the same amount of 2β (∼70− 75%) was found. These results confirm the reaction course in Scheme 1 with nitronates $A\alpha$ and $A\beta$ that lead via 1 to 2α , 3α , and 2β . Protonation of A β from the α -side is for stereoelectronic and thermodynamic reasons disfavored; hence, 3β is not found.

Isolation of 2β was performed by chromatography on silica gel of equilibrated reaction mixtures (Table 1, entry 9). As 2α decomposes under these conditions, 2β could be readily obtained. Pure 2α was obtained by crystallization from solutions that contained only 2α (Table 1, entries 2, 6). Hence, chromatography of a mixture of 2α and 3α led to pure 3α . The structures of these compounds were unequivocally assigned with the help of NMR data (Table 3). The $^1\rm H$ NMR data clearly

Table 3. Selected NMR Data of Compounds 2α , β , 3α , 5α , β

	$2\alpha^a$	$2\beta^a$	$3\alpha^a$	$5a^b$	$5\beta^b$
1-H $(J_{1,2})$		5.78 (6.0) 4.84 (10.0) 5.77 (1.8)		5.94(6.0)	5.20(10.1)
2-H $(J_{2,3})$		4.84 (10.8) 4.42 (10.0) 5.04 (4.8)		5.21(11.1)	4.64 (10.2)
$3-H (J_{3,4})$		4.36 (10.2) 4.18 (10.0) 4.05 (7.6)		$4.43-4.61$ ^c (3.0)	4.38(2.6)
4-H $(J_{4,5})$	3.73(9.6)	$3.51 - 3.59$ 4.26 (9.6)		4.33(0)	4.23(0)
$5-H$	$4.35 - (4.0)$	3.51-3.59 ^c 4.28-(4.5)		$4.53 - (5.0)$	(6.2) 4.10
$(J_{5,6})(J_{5,6})$	$4.38c$ (2.0)		$4.31^{c(1.4)}$	4.56 $^{\circ}$ (7.0)	(6.2)
6-H $(J_{6,6})$	3.76(11.0)	$3.66 - 3.73$ ^c 3.73 (11.0) 3.63 (10.0)			$3.57 - 3.64$ ^C
$6'$ -H	3.62		3.64	3.56	
$C-1(J_{C-1+1+H})$	85.64	82.92	83.97 (176)	84.36	81.83

show that the compounds are preferentially in the ${}^{4}C_{1}$ conformation ($J_{2,3} \approx J_{3,4} \approx 10$ Hz for 2α and 2β and $J_{3,4} = 7.6$ Hz, $J_{4.5}$ = 9.6 Hz for 3 α). The $J_{1.2}$ values confirmed the assigned structures, and the ¹³C NMR shift of C-1 of 3α (δ = 83.97) and the coupling constant of $J_{\text{C-1, 1-H}}$ 176 Hz is in accordance with the expected value.¹² Instead of the β-anomer $2β$, the α-anomer $2α$ was employed in the previously described glycosidation reactions that led, as cor[rec](#page-3-0)tly assigned, mainly to β -glycosides.^{6b}

Thiophenol addition to 2-nitrogalactal 4^{1b} (Scheme 2) furnished similar results as those found for 1. The α -anomer 5α was obtained in a very fast triethylamine cat[alyz](#page-3-0)ed reaction. A longer reaction time led to the formation of 5β that finally became the main product. As equilibration was faster in this case, for stereoelectronic reasons neither the α - nor the β -talo-product was found. Hence, protonation of the C-2 carbanion

intermediate at the α -side is by far slower than protonation at the β-side. As 5α is more stable than 2α, separation of 5α and 5β by silica gel chromatography was possible. The structural assignments are based on NMR data (Table 3). As the ¹H NMR data of **5** α and **5** β were previously collected from CDCl₃ solutions, where the proton signals partly ove[rla](#page-1-0)p, the anomeric assignments were ambiguous. Solutions of 5α and 5β in DMSO- d_6 led to quite well separated ¹H NMR shifts, and also the X-ray analysis of 5β confirmed the C₁-configuration (Figure 1, CCDC no. 1043491). Thus, the structures could be unequivocally assigned.

Figure 1. X-ray diffraction analysis of compound 5β (Ortep plot at 50% probability ellipsoids).

Improvements in glycosidation methodology are still in demand.¹³ Hence, glycosyl donors with a nitro group in the 2position could provide a versatile alternative for the synthesis of glycosa[min](#page-3-0)e glycosides, as the nitro group can be readily reduced to the amino group.^{1c} Thus, this approach is of importance, for instance, for the synthesis of glycopeptide O- and N-glycans and of glycosaminoglyc[ans](#page-3-0), respectively.

Previous glycosidation attempts with 2-nitro-1-thioglycosides 2 α and 5 α as glycosyl donors (not the β -anomers 2 β and 5 β but the α -anomers were employed; see above) were performed with NIS/TMSOTf as the promoter in DCM at 0 $^{\circ}C$.^{6b} The present studies with 2β as the donor and 6d as the acceptor under varying reaction conditions show (see Table 4, entries 1−[5\)](#page-3-0) that ArSCl/ AgOTf as the promoter system, in DCM as the solvent at −60 °C, leads to much better results in terms of product yield and anomeric selectivity. Thus, from $2β$ and 6d the $β$ -disaccharide $7d\beta$ could be stereoselectively obtained in high yield (entries 4,

Table 4. Optimization of the Glycosidation Conditions^{a}

a Reactions were carried out at −60 °C for 5 h except as otherwise noted. ^bNIS (2.0 equiv), TMSOTf (0.1 equiv) for 1 h. ^cReaction temperature 0°C . d_p -TolSCl (1.1 equiv), AgOTf (3.0 equiv). e_p - $O_2NC_6H_5SC$ (1.2 equiv), AgOTf (3.0 equiv) f Preactivation.

5). Diethyl ether as solvent did neither support the reaction nor lead to preferential α -glycoside formation (entries 6, 7), and THF as solvent led to a dramatic decrease in yield, as THF was decomposed by the promoter system (entries 8−10). Hence, the nitro group provides strong anchimeric assistance in these glycosidations. A direct neighboring group participation of the 2 nitro group at the anomeric center is for energetic reasons not expected.¹⁴ A nitro group mediated stabilization of the ${}^{3}H_{4}$ conformer of the glycosyl cation together with a strong electronic shielding [o](#page-3-0)f incoming nucleophiles on the α -side favor β anomeric attack. The β -directing effect of corresponding 2-fluoro substituted glycosyl donors was also explained by the preference for the ${}^{3}H_{4}$ -conformer.¹⁵ These effects cannot be overcome by the ether solvent effect; the results in THF as the solvent are not conclusive due to t[he](#page-3-0) unknown influence of the solvent decomposition products on the anomeric selectivity. However, H-bond formation of the acceptor to the donor nitro group could overcome the shielding effect and thus favor α -product formation. Hence, trifluoroethanol (6b) that is prone to Hbond formation¹⁶ was selected as the acceptor and, indeed, appreciable amounts of the α -products (7b α , 8b α) were formed (entries 11−13[\). T](#page-3-0)hus, via increased H-bonding a strong dualdirecting effect of the nitro group can be envisaged.^{17,18}

With this activation protocol for the glycosyl donors 2α , 2β , 5 α , a[n](#page-3-0)d 5 β in hand, we studied the glycosidation [of](#page-3-0) various acceptors (Table 5). The reactions with isopropanol show (entries 1, 2 and 8, 9) that, independent of the anomeric configuration of th[e d](#page-3-0)onor, exclusively the β -products $7a\beta^{6b}$ and $8a\beta$,⁶⁶ respectively, were obtained. Hence, we used for the following reactions the β -thioglycoside donors 2β a[nd](#page-3-0) 5β . Rea[ctio](#page-3-0)n with 6-O-, 2-O-, 3-O-, and 4-O-unprotected glucosides 6c−6f as acceptors furnished the β -products 7c β ^{3h} and unknown 7d β , 7e β , and 7t β in very good yields (entries 3–6). Also less reactive 2,3,4-tri-O-benzoyl protected galactosi[de](#page-3-0) 6g gave with 2β exclusively the β -disaccharide 7g β (entry 7). Similarly, with the preactivation protocol,^{9a,19} from 5β as the donor and 6c and 6e as acceptors, almost exclusively the β -linked disaccharides $8c\beta$ ^{1b} and $8e\beta$ were gener[ated](#page-3-0) (entries 10, 11). With the present procedures, the thiogalactoside acceptor 6h could also be gly[cos](#page-3-0)idated yielding practically exclusively β -linked disaccharide $8h\beta$, that is available for further chain extension with the same promoter system (entry 12).^{9a} Not unexpected for galactosyl donors, some minor amounts of the α -linked glycosides were detected that could be readily [se](#page-3-0)parated by chromatography. It is noteworthy that $β$ -1,4-linked disaccharides 7e $β$ and 8e $β$ could not be obtained by direct Michael-type addition of the sterically demanding acceptor 6e to 2-nitro-glycals.^{1b,3h}

In conclusion, kinetic and thermodynamic reaction control of thiolate addition to 2-nitroglycals permits [the s](#page-3-0)elective synthesis of either α - or β -2-deoxy-2-nitro-1-thiogluco- and galatopyranosides, respectively. The reaction rate is increased by the addition of bis-H-bonding thioureas as the catalyst; with chiral derivatives no influence on the α/β ratio was observed. The substrate inherent strong stereoelectronic effect, favoring fast thiolate addition from the α -side, overrides the anomeric diastereoselection control by a chiral thiourea.

The aryl 2-deoxy-2-nitro-thioglycosides obtained were efficient glycosyl donors under arylsulfenyl chloride/silver triflate activation. Moreover, due to anchimeric assistance by the nitro group, they afford mainly the β -products. As the nitro group can be readily transformed into the amino group, a competitive alternative to the acylamino group assisted glycosidation of glucosamine and galactosamine derivatives is available.

Table 5. Glycosidation Results with Glycosyl Donor 2α , 2β , 5α, 5β with Acceptors 6a, 6c–6f^a

a The reactions were performed in DCM at −60 °C with 1.2 equiv of donor, 1.0 equiv of acceptor and p -O₂NC₆H₅SCl (1.2 equiv)/AgOTf (3.0 equiv) as promoter for 5 h. b^{b} 1.5 equiv of 2b; with 1.0 equiv of 2b only 66% of $7e\beta$ was obtained. ^cPreactivation.

■ ASSOCIATED CONTENT

S Supporting Information

Experimental procedures and characterization data of new products. This material is available free of charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION

Corresponding Author

*E-mail: Richard.Schmidt@uni-konstanz.de.

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

We are grateful to University Konstanz for support of this work.

■ REFERENCES

(1) (a) Winterfeld, G. A.; Schmidt, R. R. Angew. Chem., Int. Ed. 2001, 40, 2654. (b) Das, J.; Schmidt, R. R. Eur. J. Org. Chem. 1998, 1609. (c) Winterfeld, G. A.; Ito, Y.; Ogawa, T.; Schmidt, R. R. Eur. J. Org. Chem. 1999, 1167. (d) Winterfeld, G. A.; Khodair, A. I.; Schmidt, R. R. Eur. J. Org. Chem. 2003, 1009.

(2) (a) Schmidt, R. R.; Vankar, Y. D. Acc. Chem. Res. 2008, 41, 1059. (b) Reddy, B. G.; Schmidt, R. R. Nat. Protoc. 2008, 3, 114.

(3) (a) Pachamuthu, K.; Gupta, A.; Das, J.; Schmidt, R. R.; Vankar, Y. D. Eur. J. Org. Chem. 2002, 1479. (b) Pachamuthu, K.; Schmidt, R. R. Synlett 2003, 1355. (c) Khodair, A. I.; Winterfeld, G. A.; Schmidt, R. R. Eur. J. Org. Chem. 2003, 1847. (d) Geiger, J.; Reddy, B. G.; Winterfeld, G. A.; Weber, R.; Przybylski, M.; Schmidt, R. R. J. Org. Chem. 2007, 72, 4367. (e) Pachamuthu, K.; Figueroa-Perez, I.; Ali, I. A. I.; Schmidt, R. R. Eur. J. Org. Chem. 2004, 3959. (f) Balamurugan, R.; Pachamuthu, K.; Schmidt, R. R. Synlett 2005, 134. (g) Corzana, F.; Busto, J. H.; Jiménez-Osés, G.; Asensio, J. L.; Jiménez-Barbero, J.; Peregrina, J. M.; Avenoza, A. J. Am. Chem. Soc. 2006, 128, 14640. (h) Xue, W.; Sun, J.; Yu, B. J. Org. Chem. 2009, 74, 5079. (i) Bhatt, B.; Thomson, R. J.; von Itzstein, M. J. Org. Chem. 2011, 76, 4099. (j) Reddy, B. G.; Vankar, Y. D. Angew. Chem., Int. Ed. 2005, 44, 2001. (k) Vedachalam, S.; Tan, S. M.; Teo, H. P.; Cai, S.; Liu, X.-W. Org. Lett. 2012, 14, 174. (l) Zhang, Q.; Sun, J.; Zhang, F.; Yu, B. Eur. J. Org. Chem. 2010, 3579. (m) Cai, S.; Xiang, S.; Zeng, J.; Gorityala, B. K.; Liu, X.-W. Chem. Commun. 2011, 47, 8676. (n) Zhang, T.; Yu, C.-Y.; Huang, Z.-T.; Jia, Y.-M. Synlett 2010, 2174. (o) Holzapfel, C. W.; van der Merwe, T. L. Tetrahedron Lett. 1996, 37, 2307. (p) Delaunay, T.; Poisson, T.; Jubault, P.; Pannecoucke, X. Eur. J. Org. Chem. 2014, 7525. (q) Dharuman, S.; Gupta, P.; Kancharla, P. K.; Vankar, Y. D. J. Org. Chem. 2013, 78, 8442. (r) Dharuman, S.; Vankar, Y. D. Org. Lett. 2014, 16, 1172.

(4) Winterfeld, G. A.; Das, J.; Schmidt, R. R. Eur. J. Org. Chem. 2000, 3047.

(5) Lemieux, R. U.; Nagabhushan, T. L.; O'Neill, I. K. Can. J. Chem. 1968, 46, 413.

(6) (a) Holzapfel, C. W.; Marais, C. F.; Van Dyk, M. S. Synth. Commun. 1988, 18, 97. (b) Barroca, N.; Schmidt, R. R. Org. Lett. 2004, 6, 1551. (7) For reviews, see: (a) Brak, K.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2013, 52, 534. (b) Mahlau, M.; List, B. Angew. Chem., Int. Ed. 2013, 52, 518. (c) Enders, D.; Grondal, C.; Hüttl, M. R. M. Angew. Chem., Int. Ed. 2007, 46, 1570.

(8) For thiourea mediated acid catalyzed glycosidation of glycals, see: Balmond, E. I.; Coe, D. M.; Galan, M. C.; McGarrigle, E. M. Angew. Chem., Int. Ed. 2012, 51, 9152.

(9) (a) Huang, X.; Huang, L.; Wang, H.; Ye, X.-S. Angew. Chem., Int. Ed. 2004, 43, 5221. (b) Crich, D.; Cai, F.; Yang, F. Carbohydr. Res. 2008, 343, 1858 and related references.

(10) Okino, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc. 2003, 125, 12672.

(11) Li, B.-J.; Jiang, L.; Liu, M.; Chen, Y.-C.; Ding, L.-S.; Wu, Y. Synlett 2005, 603.

(12) (a) Frihed, T. G.; Walvoort, M. T. C.; Codée, J. D. C.; van der Marel, G. A.; Bols, M.; Pedersen, C. M. J. Org. Chem. 2013, 78, 2191. (b) Dinkelaar, J.; de Jong, A. R.; van Meer, R.; Somers, M.; Lodder, G.; Overkleeft, H. S.; Codée, J. D. C.; van der Marel, G. A. J. Org. Chem. 2009, 74, 4982.

(13) (a) Zhu, X.; Schmidt, R. R. Angew. Chem., Int. Ed. 2009, 48, 1900. (b) Wang, Y.; Ye, X.-S.; Zhang, L.-H. Org. Biomol. Chem. 2007, 5, 2189. (c) Seeberger, P. H. Chem. Soc. Rev. 2008, 37, 19. (d) Boltje, T. J.; Buskas, T.; Boons, G.-J. Nat. Chem. 2009, 1, 611. (e) Crich, D. Acc. Chem. Res. 2010, 43, 1144. (f) Hsu, C.-H.; Hung, S.-C.; Wu, C.-Y.; Wong, C.-H. Angew. Chem., Int. Ed. 2011, 50, 11872. (g) Yu, B.; Sun, J.; Yang, X. Acc. Chem. Res. 2012, 45, 1227.

(14) Neighboring group participation is claimed for the 2-O-(2 nitrobenzyl) protecting group: Buda, S.; Gołębiowska, P.; Mlynarski, J. Eur. J. Org. Chem. 2013, 3988.

(15) Bucher, C.; Gilmour, R. Angew. Chem., Int. Ed. 2010, 49, 8724.

(16) Balasubramanian, A.; Rao, C. N. R. Spectrochim. Acta 1962, 18, 1337.

(17) Le Mai Hoang, K.; Liu, X.-W. Nat. Commun. 2014, 5, 5051.

(18) For the importance of H-bonding in glycosidations, see: (a) Pistorio, S. G.; Yasomanee, J. P.; Demchenko, A. V. Org. Lett. 2014, 16, 716. (b) Geng, Y.; Kumar, A.; Faidallah, H. M.; Albar, H. A.; Mhkalid, I. A.; Schmidt, R. R. Angew. Chem., Int. Ed. 2013, 52, 10089. (19) Crich, D.; Sun, S. J. Am. Chem. Soc. 1998, 120, 435.